Math, asked by harjyotkaur13, 9 months ago

if a=2+√3 then find the value of a-1/a​

Answers

Answered by Uriyella
19

 \rule{200}3

 \huge\sf \green{\underline{\red{\underline{\blue{\underline{\orange{Question :-}}}}}}}

If a=2+√3 then find the value of  a- \frac{1}{a}

 \rule{150}3

 \huge\sf \green{\underline{\red{\underline{\blue{\underline{\orange{Given :-}}}}}}}

  • a = 2 + √3

 \rule{150}3

 \huge\sf \green{\underline{\red{\underline{\blue{\underline{\orange{To Find :-}}}}}}}

  • Find the value of  a - \frac{1}{a}

 \rule{150}3

 \huge\sf \green{\underline{\red{\underline{\blue{\underline{\orange{Solution :-}}}}}}}

 \frac{1}{a} = \frac{1}{2 + \sqrt{3}}

On the rationalizing this denominator we get,

 \frac{1}{a} = \frac{1}{2 + \sqrt{3}} \times \frac{2 - \sqrt{3}}{2 - \sqrt{3}}

Using the identity:

 (x+y)(x-y) = {x}^{2}-{y}^{2}

 \frac{1}{a}  =  \frac{2 -  \sqrt{3} }{ {(2)}^{2}  -   { (\sqrt{3}) }^{2} }

 \frac{1}{a}  =  \frac{2 -  \sqrt{3} }{4 - 3}

 \frac{1}{a}  =  \frac{2 -  \sqrt{3} }{1}

 \frac{1}{a}  = 2 -  \sqrt{3}

a -  \frac{1}{a}

Now,

Putting the values,

a -  \frac{1}{a}  = (2  +   \sqrt{3} ) - (2 -  \sqrt{3} )

a -  \frac{1}{a}   = \cancel{2} +  \sqrt{3}  \cancel{- 2} +  \sqrt{3}

a -  \frac{1}{a}  =  \sqrt{3}  +  \sqrt{3}

a -  \frac{1}{a}  = 2 \sqrt{3}

 \rule{200}3

Similar questions