Math, asked by nikethekka, 8 months ago

if a=2+√3, then find the value of a-1/a


Answers

Answered by alihasan77
1

Answer:

please don't go through to my writing really sorry for it

hope you will understand it

please follow me and give me 10 thanks

Attachments:
Answered by rinkeechaubey
0

Answer:

Heya friend,

Here is the answer you were looking for:

\begin{gathered}a = 2 + \sqrt{3} \\ \\ \frac{1}{a} = \frac{1}{2 + \sqrt{3} } \\\end{gathered}

a=2+

3

a

1

=

2+

3

1

On rationalizing the denominator we get,

\begin{gathered}\frac{1}{a} = \frac{1}{2 + \sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3} } \\\end{gathered}

a

1

=

2+

3

1

×

2−

3

2−

3

Using the identity :

(x + y)(x - y) = {x}^{2} - {y}^{2}(x+y)(x−y)=x

2

−y

2

\begin{gathered}\frac{1}{a} = \frac{2 - \sqrt{3} }{ {(2)}^{2} - {( \sqrt{3} )}^{2} } \\ \\ \frac{1}{a} = \frac{2 - \sqrt{3} }{4 - 3} \\ \\ \frac{1}{a} = 2 - \sqrt{3} \\ \\ a - \frac{1}{a}\end{gathered}

a

1

=

(2)

2

−(

3

)

2

2−

3

a

1

=

4−3

2−

3

a

1

=2−

3

a−

a

1

Putting the values,

\begin{gathered}a - \frac{1}{a} = (2 + \sqrt{3} ) - (2 - \sqrt{3} ) \\ \\ a - \frac{1}{a} = 2 + \sqrt{3} - 2 + \sqrt{3} \\ \\ a - \frac{1}{a} = \sqrt{3} + \sqrt{3} \\ \\ a - \frac{1}{a} = 2 \sqrt{3}\end{gathered}

a−

a

1

=(2+

3

)−(2−

3

)

a−

a

1

=2+

3

−2+

3

a−

a

1

=

3

+

3

a−

a

1

=2

3

Hope this helps!!!

Feel free to ask in the comment section if you have any doubt regarding to my answer...

@Mahak24

Thanks...

☺☺

Similar questions