Math, asked by gauravsingh86, 5 months ago

If a = 2 + √3, then find the value of (a-1/a)

Answers

Answered by Anonymous
143

\sf{\underline{\underline{\orange{Given}}}}

  • \tt{a = 2 + \sqrt{3}}

\sf{\underline{\underline{\orange{To\: Find}}}}

  • \tt{Value\: of\: a - \dfrac{1}{a}}

\sf{\underline{\underline{\orange{Solution}}}}

★ It is given that :-

\tt{a = 2 + \sqrt{3}}

\tt{\dfrac{1}{a} = \dfrac{1}{2 + \sqrt{3}}}

★ Rationalising

\tt{\dfrac{1}{a} = \dfrac{1}{2 + \sqrt{3}} × \dfrac{2 - \sqrt{3}}{2 - \sqrt{3}}}

⠀⠀⟹ \tt{\dfrac{1}{a} = \dfrac{2 - \sqrt{3}}{(2)^2 - (\sqrt{3})^2}}

⠀⠀⠀⠀⟹ \tt{\dfrac{1}{a} = \dfrac{2 - \sqrt{3}}{4 - 3}}

⠀⠀⠀⠀⠀⠀⟹ \tt{\dfrac{1}{a} = 2 - \sqrt{3}}

★ Now, Putting the values

\tt{a - \dfrac{1}{a} = (2 + \sqrt{3}) - (2 - \sqrt{3}}

⠀⠀⟹ \tt{a - \dfrac{1}{a} = 2 + \sqrt{3} - 2 + \sqrt{3}}

⠀⠀⠀⠀⟹ \tt{a - \dfrac{1}{a} = \sqrt{3} + \sqrt{3}}

⠀⠀⠀⠀⠀⠀⟹ \tt{a - \dfrac{1}{a} = 2\sqrt{3}}

Similar questions