Math, asked by simran12332, 6 months ago

If a = 2 + √3 ,then find the value of (a - 1/a) ,

Answers

Answered by anurag2147
0

Answer:

(a - 1/a)= 2 + √3 - 1/ 2 + √3

(2+√3)²-1 / 2+√3

6+4√3/ 2 + √3

Answered by prince5132
19

GIVEN :-

  • a = 2 + √3 .

TO FIND :-

  • The value of a - 1/a.

SOLUTION :-

 \\ :  \implies \displaystyle \sf \bigg(  \: a -  \frac{1}{a}  \bigg) = 2 +  \sqrt{3}  -  \frac{1}{2 +  \sqrt{3} }  \\  \\

 { \displaystyle \sf  \: \dag \: Rationalise \:  the \:  denominator.} \\  \\

:  \implies \displaystyle \sf \bigg(  \: a -  \frac{1}{a}  \bigg) = 2 +  \sqrt{3}  -  \frac{1(2 -  \sqrt{3} )}{(2 +  \sqrt{3}) (2 -  \sqrt{3} )}   \\  \\  \\

:  \implies \displaystyle \sf \bigg(  \: a -  \frac{1}{a}  \bigg) = 2 +  \sqrt{3}  -  \frac{2 -  \sqrt{3} }{(2) ^{2}  - ( \sqrt{3} ) ^{2} }  \\  \\  \\

:  \implies \displaystyle \sf \bigg(  \: a -  \frac{1}{a}  \bigg) = 2 +  \sqrt{3}  -  \frac{2 -  \sqrt{3} }{4 -  \sqrt{9} }  \\  \\  \\

:  \implies \displaystyle \sf \bigg(  \: a -  \frac{1}{a}  \bigg) = 2 +  \sqrt{3}  -  \frac{2 -  \sqrt{3} }{4 - 3}  \\  \\  \\

:  \implies \displaystyle \sf \bigg(  \: a -  \frac{1}{a}  \bigg) = 2 +  \sqrt{3}  -  \frac{2 -  \sqrt{3} }{1}  \\  \\  \\

:  \implies \displaystyle \sf \bigg(  \: a -  \frac{1}{a}  \bigg) = 2 +  \sqrt{3}  - (2 -  \sqrt{3})  \\  \\  \\

:  \implies \displaystyle \sf \bigg(  \: a -  \frac{1}{a}  \bigg) = 2  - 2 +   \sqrt{3}  +  \sqrt{3}  \\  \\  \\

:  \implies \displaystyle \sf \bigg(  \: a -  \frac{1}{a}  \bigg) = 0 + 2 \sqrt{3}\\  \\  \\

:  \implies \underline{ \bold{ \boxed{ \displaystyle \mathfrak{ \bigg(  \: a -  \frac{1}{a}  \bigg) = 2 \sqrt{3}}}}}

Similar questions