Math, asked by mrbeastpewds, 3 months ago

if a = 2+√3 , then find the value of a - 1/a​

Answers

Answered by Anonymous
18

GIVEN :-

 \\  \sf \: a = 2 +  \sqrt{3}  \\  \\

TO FIND :-

 \\  \sf \: a -  \dfrac{1}{a}  \\  \\

SOLUTION :-

We have,

 \\  \sf \: a = 2 +  \sqrt{3}  \\

Taking reciprocal,

 \\  \sf  \:  \frac{1}{a}  =  \frac{1}{2 +  \sqrt{3} }  \\

Rationalising the denominator,

Rationalising factor is 2-√3.

 \\

So, multiplying numerator and denominator by 2-√3,

 \\  \implies \sf \:  \dfrac{1}{a}  =  \dfrac{1}{2 +  \sqrt{3} }  \times  \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\ \implies  \sf \:  \dfrac{1}{a}  =  \dfrac{(2 -  \sqrt{3})(2 - \sqrt{3}) }{(2 +  \sqrt{3} )(2 -  \sqrt{3}) }  \\ \\

For numerator,

(a-b)(a-b) = a² + b² - 2ab

  • a = 2
  • b = √3

For denominator,

(a+b)(a-b) = a² - b²

  • a = 2
  • b = -√3

Putting values,

 \\  \implies \sf \:  \dfrac{1}{a}  =  \dfrac{ {2}^{2} - 2(2)( \sqrt{3}) + {( -  \sqrt{3}) }^{2}}{ {2}^{2} -  {( -  \sqrt{3}) }^{2}  }  \\  \\  \implies \sf \:  \dfrac{1}{a}  =  \dfrac{4 -  4 \sqrt{3} + 3 }{4 - 3}  \\  \\ \implies  \sf \:   \boxed{ \sf\dfrac{1}{a}  = 7 - 4 \sqrt{3} } \\  \\

We have ,

 \\  \bullet \:  \:  \:  \:  \:  \:  \sf \: a = 2 +  \sqrt{3}  \\  \\  \bullet \:  \:  \:  \:  \:  \sf \:  \dfrac{1}{a}  = 7 - 4 \sqrt{3}  \\  \\

So,

 \\  \implies \sf \: a -  \dfrac{1}{a}  = 2 +  {\sqrt{3}}  - 7 + { 4 \sqrt{3} } \\   \\ \\ \implies  \underbrace{\boxed{  \sf \: a -  \dfrac{1}{a }  = - 5 + { 5 \sqrt{3}}}}

Answered by MostlyMad
80

\mathfrak{{\pmb{{\underline{Given}}:}}}

  • \sf{a=2+{\sqrt{3}}}

\mathfrak{{\pmb{{\underline{To~find}}:}}}

  • \sf{a-{\dfrac{1}{a}}}

\mathfrak{{\pmb{{\underline{Solution}}:}}}

\sf{~~~~~~~~~~ a-{\dfrac{1}{a}}}

\sf\implies{(2+{\sqrt{3}})-{\dfrac{1}{2+{\sqrt{3}}}}}

\sf\implies{{\dfrac{(2+{\sqrt{3}})(2+{\sqrt{3}})+1}{2+{\sqrt{3}}}}~~~~~~~~~~(LCM=2+{\sqrt{3}})}

\sf\implies{{\dfrac{4+4{\sqrt{3}}+3+1}{2+{\sqrt{3}}}}}

\sf\implies{{\dfrac{\cancel{~8~}~~^{4}+4{\sqrt{3}}}{\cancel{~2~}~~^{1}+{\sqrt{3}}}}}

\sf\implies{{\dfrac{4+4×\cancel{{\sqrt{3}}}}{1+ \cancel{{\sqrt{3}}}}}}

\sf\implies{4+4}

\sf\implies{{\blue{\underline{\boxed{\sf{\pmb{~8~}}}}}}}

\therefore\mathfrak{{\pmb{{\underline{Required~answer}}:}}}

  • \sf{a-{\dfrac{1}{a}}=~{\blue{\underline{\underline{\sf{\pmb{~8~}}}}}}}
Similar questions