Math, asked by MarinaBegam, 3 months ago

If a= 2+ √3 , then find the value of a - 1/ a.​

Answers

Answered by Anonymous
5

GIVEN :-

 \\  \sf \: a = 2 +  \sqrt{3}  \\  \\

TO FIND :-

 \\  \sf \: a -  \dfrac{1}{a}  \\  \\

SOLUTION :-

We have ,

 \\  \sf \: a = 2 +  \sqrt{3}  \\

Taking reciprocal,

 \\  \sf \:  \dfrac{1}{a}  =  \dfrac{1}{2 +  \sqrt{3} }  \\

Rationalising the denominator,

Rationalising factor is 2 - √3.

Multiplying numerator and denominator with (2 - √3).

 \\   \implies\sf \: \dfrac{1}{a} =  \dfrac{1}{2 +  \sqrt{3} }  \times  \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\  \\  \implies \sf \: \dfrac{1}{a} =  \dfrac{2 -  \sqrt{3} }{(2 +  \sqrt{3} )(2 -  \sqrt{3} )}  \\

In denominator,

★ (a+b)(a-b) = a² - b²

  • a = 2
  • b = √3

Putting values,

 \\   \implies\sf \: \dfrac{1}{a} =  \frac{2 -  \sqrt{3} }{ {2}^{2} - ( { \sqrt{3} )}^{2} }  \\  \\  \\  \implies \sf \: \dfrac{1}{a} =  \dfrac{2 -  \sqrt{3} }{4 - 3}  \\  \\  \\  \implies  \underbrace{\sf \: \dfrac{1}{a} = 2 -  \sqrt{3}} \\

We have ,

  • a = 2 + √3
  • 1/a = 2 - √3

 \\   \implies\sf \: a -  \dfrac{1}{a}  = 2 +  \sqrt{3}  - (2  -   \sqrt{3} ) \\  \\  \\  \implies \sf \: a -  \dfrac{1}{a} = 2 +  \sqrt{3}  - 2 +  \sqrt{3}  \\  \\   \\ \implies     \underline{\overline{\boxed{\sf \: a -  \dfrac{1}{a} = 2 \sqrt{3} } }}

Similar questions