Math, asked by sourabhyata, 3 months ago

if a= 2-√3 then find the value of a-1/a​

Answers

Answered by UtsavPlayz
4

a = 2 -  \sqrt{3}

So,

 \frac{1}{a}  =  \frac{1}{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }  \\  \\  \frac{1}{a}  =  \frac{2 +  \sqrt{3} }{ {2}^{2}  -  { \sqrt{3} }^{2} }  \\  \\  \frac{1}{a}  =  \frac{2 +  \sqrt{3} }{4 - 3}  = 2 +  \sqrt{3}

Hence,

a -  \frac{1}{a}   \\  = 2 -  \sqrt{3}   -  2  -  \sqrt{3}  \\  =  - 2 \sqrt{3}

Answered by hemanji2007
1

 \Huge \mathsf {\colorbox{yellow} {\underline{QUESTION}}}

a= 2-√3 then find the value of

if \: a = 2 -  \sqrt{3 . }then  \: find \: the \: value \: of \: \:  a -  \frac{1}{a}

 \Huge \mathsf {\colorbox{yellow} {\underline{To Find}}}

find \: the \: value \: of \: a -  \frac{1}{a}

 \Huge \mathsf {\colorbox{yellow} {\underline{ANSWER}}}

2 -   \sqrt{3 }  -  \frac{1}{2 -  \sqrt{3} }

2 -  \sqrt{3}  -  \frac{1}{2 -  \sqrt{3} } \times  \frac{ 2 +  \sqrt{3} }{2 +  \sqrt{3} }  by \: rationalizing

2 -  \sqrt{3}  -  \frac{2 +  \sqrt{3} }{4 - 3}

2 -  \sqrt{3}  - 2 - \sqrt{3}

2 -  \sqrt{3}  - 2 -  \sqrt{3}

So, Answer is -2√3

Similar questions