Math, asked by Sandeepjadaun2598, 4 months ago

If a =2+√3 then find the value of a + 1/q

Answers

Answered by Asterinn
4

Given :

  • a = 2+√3

To find :

  • a + 1/a

Solution :

 \sf \implies a = 2 +  \sqrt{3}

 \sf \implies  \dfrac{1}{a}  = \dfrac{1}{2 +  \sqrt{3}}

\sf \implies  \dfrac{1}{a}  = \dfrac{1}{2 +  \sqrt{3}}  \times \dfrac{2  -   \sqrt{3}}{2  -   \sqrt{3}}

\sf \implies  \dfrac{1}{a}  = \dfrac{1}{2 +  \sqrt{3}}  \times \dfrac{2  -   \sqrt{3}}{ {(2)}^{2}   -    {(\sqrt{3})}^{2} }

\sf \implies  \dfrac{1}{a}  = \dfrac{2  -   \sqrt{3}}{ 4  -    3 }

\sf \implies  \dfrac{1}{a}  = \dfrac{2  -   \sqrt{3}}{ 1 }

\sf \implies  \dfrac{1}{a}  = {2  -   \sqrt{3}}

\sf \implies a  +  \dfrac{1}{a} =( 2 +  \sqrt{3})  + (2 -  \sqrt{3} )

\sf \implies a  +  \dfrac{1}{a} = 2 +  \sqrt{3}  + 2 -  \sqrt{3}

\sf \implies a  +  \dfrac{1}{a} = 4

Answer : 4

Similar questions