if =a 2+√3 then find the Value of a2 +1/a2
Answers
EXPLANATION.
⇒ a = 2 + √3.
As we know that,
We can write equation as,
⇒ 1/a = 1/(2 + √3).
Now, rationalize the equation, we get.
⇒ 1/a = 1/(2 + √3) x (2 - √3)/(2 - √3).
⇒ 1/a = (2 - √3)/[(2)² - (√3)²].
⇒ 1/a = (2 - √3)/[4 - 3].
⇒ 1/a = (2 - √3)/1 = 2 - √3.
To find :
⇒ a² + 1/a².
⇒ a² = (2 + √3)².
⇒ a² = 4 + 3 + 4√3.
⇒ a² = 7 + 4√3.
⇒ 1/a² = (2 - √3)².
⇒ 1/a² = 4 + 3 - 4√3.
⇒ 1/a² = 7 - 4√3.
⇒ (a² + 1/a²) = [(7 + 4√3) + (7 - 4√3].
⇒ (a² + 1/a²) = [7 + 4√3 + 7 - 4√3].
⇒ (a² + 1/a²) = 14.
Correct Question :
- If a = 2+√3 then find the value of a² +1/a²
To Find :
- The value of a² + 1/a²
GivEn Data :
- a = 2 +√3
Identity Used :
Concept :
Rationalisation :
- The process of multiplying a surd by another surd to get a rational number is called rationalisation.
- Each surd is called rationalising factor of another surd.
Rule to Rationalise the denominator of an expression :
- Multiply and divide the numerator and denominator of the given expression by rationalising factor of its denominator and simplify.
Solution :
It is given that the value of a is 2 + √3
So 1/a must be 1/(2 + √3) [By putting a's value in the denominator]
Now using the concept we get
Now as we can see that the denominator is (2 + √3)(2 - √3)
we need to apply identity to get the simplification easier i.e. :
(a + b)(a - b) = a² - b²
Here,
a ⟹ 2
b ⟹ √3
Now as per the given condition we need to find a² + 1/a²
Putting the values we get
- Hence, the answer is 14
Learn More !!