Math, asked by vandithagowda18, 18 days ago

if =a 2+√3 then find the Value of a2 +1/a2​

Answers

Answered by amansharma264
33

EXPLANATION.

⇒ a = 2 + √3.

As we know that,

We can write equation as,

⇒ 1/a = 1/(2 + √3).

Now, rationalize the equation, we get.

⇒ 1/a = 1/(2 + √3) x (2 - √3)/(2 - √3).

⇒ 1/a = (2 - √3)/[(2)² - (√3)²].

⇒ 1/a = (2 - √3)/[4 - 3].

⇒ 1/a = (2 - √3)/1 = 2 - √3.

To find :

a² + 1/a².

⇒ a² = (2 + √3)².

⇒ a² = 4 + 3 + 4√3.

⇒ a² = 7 + 4√3.

⇒ 1/a² = (2 - √3)².

⇒ 1/a² = 4 + 3 - 4√3.

⇒ 1/a² = 7 - 4√3.

⇒ (a² + 1/a²) = [(7 + 4√3) + (7 - 4√3].

⇒ (a² + 1/a²) = [7 + 4√3 + 7 - 4√3].

(a² + 1/a²) = 14.

Answered by TYKE
37

Correct Question :

  • If a = 2+√3 then find the value of a² +1/a²

To Find :

  • The value of a² + 1/a²

GivEn Data :

  • a = 2 +√3

Identity Used :

 \green{ \star } \:  \purple{ \underline{ \boxed{ \mathfrak{ {a}^{2}  +  \frac{1}{ {a}^{2}} =  {(a +  \frac{1}{a} )}^{2}   - 2}}}} \:   \red{\star}

Concept :

Rationalisation :

  • The process of multiplying a surd by another surd to get a rational number is called rationalisation.

  • Each surd is called rationalising factor of another surd.

Rule to Rationalise the denominator of an expression :

  • Multiply and divide the numerator and denominator of the given expression by rationalising factor of its denominator and simplify.

Solution :

It is given that the value of a is 2 + √3

So 1/a must be 1/(2 + √3) [By putting a's value in the denominator]

Now using the concept we get

 \sf  \rarr \frac{1}{a}

 \sf \rarr \frac{1}{2 +  \sqrt{3} }

  \sf \rarr\frac{1(2 -  \sqrt{3} )}{(2 +  \sqrt{3})(2 -  \sqrt{3})  }

Now as we can see that the denominator is (2 + √3)(2 - √3)

we need to apply identity to get the simplification easier i.e. :

(a + b)(a - b) = a² - b²

Here,

a ⟹ 2

b ⟹ √3

 \sf \rarr \frac{2 -  \sqrt{3} }{ {(2)}^{2} -  {( \sqrt{3} )}^{2}  }

  \sf \rarr \frac{2 -  \sqrt{3} }{4 - 3}

 \sf \rarr  \frac{2 -  \sqrt{3} }{1}

  \underline{ \boxed{☢  \sf \: \frac{1}{a}  =  2 -  \sqrt{3} \:  \: ☢ }}

Now as per the given condition we need to find a² + 1/a²

 \leadsto \mathfrak{ {a}^{2}  +  \frac{1}{ {a}^{2}  }  =  {(a +  \frac{1}{a} )}^{2} - 2 }

Putting the values we get

  \leadsto \mathfrak{ {a}^{2} +  \frac{1}{ {a}^{2} }   =  {(2 +  \sqrt{3}  + 2 -  \sqrt{3}) }^{2} - 2 }

  \leadsto \mathfrak{ {a}^{2}  +  \frac{1}{ {a}^{2} } =  {(2 + 2 + \cancel{  \sqrt{3} } -  \cancel{ \sqrt{3} })}^{2}  - 2 }

 \leadsto \mathfrak{ {a}^{2}  +  \frac{1}{ {a}^{2} } =  {(4)}^{2} - 2  }

 \leadsto \mathfrak{ {a}^{2}  +  \frac{1}{ {a}^{2} } = 16 - 2 }

 \star \:   \blue{\underline{\boxed{  \green{\mathfrak{ {a}^{2}  +  \frac{1}{ {a}^{2} } = 14 }}}}}

  • Hence, the answer is 14

Learn More !!

 \star \:  \underline{ \boxed{ \mathfrak{ {(a + b)}^{2}  =  {a}^{2}  + 2ab +  {b}^{2} }}}

 \star \:  \underline{ \boxed{ \mathfrak{ {(a - b)}^{2}  =  {a}^{2}  - 2ab +  {b}^{2} }}}

\star \:  \underline{ \boxed{ \mathfrak{ {a}^{2} +  {b}^{2}  =  {(a + b)}^{2}  - 2ab }}}

\star \:  \underline{ \boxed{ \mathfrak{ {a}^{2}  +  {b}^{2} =  {(a - b)}^{2}   + 2ab}}}

\star \:  \underline{ \boxed{ \mathfrak{ {(a + b)}^{2} +  {(a - b)}^{2}  = 2( {a}^{2}  +  {b}^{2} )}}}

\star \:  \underline{ \boxed{ \mathfrak{ {(a + b)}^{2} -  {(a - b)}^{2}  = 4ab }}}

 \star \:  \underline{ \boxed{ \mathfrak{ {(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2} + 2(ab + bc + ca) }}}

\star \:  \underline{ \boxed{ \mathfrak{ {(a + b - c)}^{2}   = {a}^{2}  +  {b}^{2} +  {c}^{2}  + 2(ab + bc - ca) }}}

Similar questions