Math, asked by AyushKumarAK, 10 months ago

If a=2+√3, then find the value of

a -  \times \frac{1}{a}
please tell fast

Answers

Answered by Anonymous
22

Correct Question:

If a=2+√3, then find the value of a - 1/a.

\huge\mathfrak{Answer:}

Given:

  • We have been given that the value of a is 2 + √3.

To Find:

  • We need to find the value of a - 1/a

Solution:

As it is given that a = 2 + √3, Therefore

 \sf{ \dfrac{1}{a}  =  \dfrac{1}{2 +  \sqrt{3} } }

Now, we need to rationalize the denominator, so we have

 \sf{ \dfrac{1}{a}  =  \dfrac{1}{2 +  \sqrt{3} }  \times  \dfrac{2 -  \sqrt{3} }{2  -  \sqrt{3} } }

Using the identity :

 \sf{(x + y)(x - y) =  {x}^{2}  -  {y}^{2} }

We have,

\sf \dfrac{1}{a} = \dfrac{1-\sqrt{3}}{(2)^2-(\sqrt{3})^2}

 \implies\sf{ \dfrac{1}{a}  =  \dfrac{2 -  \sqrt{3} }{4 - 3} }

 \implies\sf{ \dfrac{1}{a}  = 2 -  \sqrt{3} }

Now we need to find the value of a - 1/a, we have

 \sf{a -  \dfrac{1}{a} = (2  +  \sqrt{3})  - (2 -  \sqrt{3}) }

  \implies\sf{a +  \dfrac{1}{a} = 2 +  \sqrt{3}  - 2 +  \sqrt{3} }

 \implies\sf{a +  \dfrac{1}{a}  =  \sqrt{3}  +  \sqrt{3} }

 \implies\sf{a -  \dfrac{1}{a}  =  \sqrt[2]{3} }

Hence, the value of a - 1/a is 2√3.


RvChaudharY50: Perfect. ❤️
BraɪnlyRoмan: Nice♡
Similar questions