Math, asked by adhil22, 10 months ago

if a=2+√3,then fine the value of [a-1/a]​

Answers

Answered by Anonymous
3

GIVEN:

  • a = 2 + ✔3

TO FIND:

  • The value of (a -1/a)

SOLUTION:

BY RATIONALIZING THE DENOMINATOR

 \rm \: \implies \: a \:  -  \frac{1}{a}  =  \: 2 +  \sqrt{3}  +  \frac{1}{2 +  \sqrt{3} }  \\  \\  \rm \:  \implies \: a \:  -  \frac{1}{a}  \:  =  \frac{(2 +  \sqrt{3} )(2 +  \sqrt{3} )}{2 +  \sqrt{3} }  \\  \\  \rm \:  \implies \: a \:  -  \frac{1}{a }  =  \frac{4 + 2 \sqrt{3}  + 2 \sqrt{3}  + 3 - 1}{2 +  \sqrt{3} }  \\  \\  \rm \:  \implies \: a \:  -  \frac{1}{a}  =  \:  \frac{7 + 4 \sqrt{3}  - 1}{2 +  \sqrt{3} }  \\  \\  \rm \:  \implies \:a \:  -  \frac{1}{a}   =  \:  \frac{6 + 4 \sqrt{3} }{2  + \sqrt{3} }  \\  \\  \rm \:  \implies \: a \:  -  \frac{1}{a}  =  \:  \frac{(6 + 4 \sqrt{3} )(2 -  \sqrt{3} )}{(2 +  \sqrt{3} )(2 -  \sqrt{3} )}  \\  \\  \rm \:  \implies \: a \:  -  \frac{1}{a}  =  \:  \frac{12 - 6 \sqrt{3} + 8 \sqrt{3}   - 12}{(2) ^{2}  -  \sqrt{3} )^{2} }  \\  \\  \rm \:  \implies \: a \:  -  \frac{1}{a}  =  \:  \frac{2 \sqrt{3} }{4 - 3}  \\  \\  \rm \:  \implies \: a \:  -  \frac{1}{a}  =  \: 2 +  \sqrt{3}

Therefore, Value of( a-1/a) = 2 ✔3

Similar questions