Math, asked by sakshipriya015, 2 days ago

if a= 2 + √3 then the value of 1/a is

Answers

Answered by amansharma264
7

EXPLANATION.

⇒ a = 2 + √3.

As we know that,

We can write equation as,

⇒ 1/a = 1/(2 + √3).

Rationalize the equation, we get.

⇒ 1/a = 1/(2 + √3) x (2 - √3)/(2 - √3).

⇒ 1/a = (2 - √3)/[(2 + √3)(2 - √3)].

⇒ 1/a = (2 - √3)/[(2)² - (√3)²].

⇒ 1/a = (2 - √3)/[4 - 3].

⇒ 1/a = (2 - √3)/1.

⇒ 1/a = 2 - √3.

Answered by YourHelperAdi
5

Given :

  • a= 2+√3

To Find :

The value of 1/a

Solution :

given, a = 2+√3

 \large \tt{ hence \:  \frac{1}{a}  =  \frac{1}{2 +  \sqrt{3} } }

but, This looks odd, so we will multiply it with its Rationalising Factor (RF) to make its denominator Rational number.

 \large \tt{The \:  RF  \: of \:  \frac{1}{2 +  \sqrt{3} }   \: is \:   \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} } }

Hence, we have to multiply :

 \large \tt{ \implies  \frac{1}{2  +  \sqrt{3} }   =  \frac{1}{2  +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} } }

  \large\tt{ \implies  \frac{1}{2  +  \sqrt{3} }  =  \frac{1(2 -  \sqrt{3}) }{(2 +  \sqrt{3} ) (2 -  \sqrt{3})} }

 \tt{ now \: using \: the \: identity : }

 \tt{(x - y)(x + y) =  {x}^{2}  -  {y}^{2} }

 \tt{we \: get \: that : }

  \large\tt{ \implies  \frac{1}{2 +  \sqrt{3} }  =  \frac{2 -  \sqrt{3} }{ {(2)}^{2}  -  {( \sqrt{3}) }^{2}  } }

  \large\tt{ \implies  \frac{1}{2  +   \sqrt{3} }  =  \frac{2 -  \sqrt{3} }{4 - 3}}

 \large \tt{ \implies  \frac{1}{2 +  \sqrt{3} }  =  \frac{2 -  \sqrt{3} }{1}}

 \red{ \underline{ \boxed{ \tt{ \therefore  \:  \frac{1}{a }  = 2 -  \sqrt{3} }}}}

Hence, 1/a = 2-√3

Similar questions