if a^2-3a+1=10 find a^3+1/a^3
Answers
Answered by
25
Given :-
- a² - 3a + 1 = 0
To Find :-
- (a³ + 1/a³) = ?
Formula used :-
- (a + b)³ = a³ + b³ + 3ab(a + b)
Solution :-
→ a² - 3a + 1 = 0
Taking a common ,
→ a (a - 3 + 1/a) = 0
→ (a - 3 + 1/a) = 0
→ (a + 1/a) = 3 ------------- Equation (1)
Cubing Both sides now,
→ (a + 1/a)³ = 3³
using (a + b)³ = a³ + b³ + 3ab(a + b) in LHS,
→ a³ + 1/a³ + 3 * a * 1/a ( a + 1/a) = 27
→ a³ + 1/a³ + 3( a + 1/a) = 27
Putting value of Equation (1) now,
→ a³ + 1/a³ + 3*3 = 27
→ (a³ + 1/a³) = 27 - 9
→ (a³ + 1/a³) = 18 (Ans.) .
Answered by
93
___________________________
- a^2-3a+1=10
___________________________
- a^3+1/a^3
___________________________
↪ a (a - 3 + 1/a) = 0
↪ (a - 3 + 1/a) = 0
↪(a + 1/a) = 3 _____(EQ.1)
↪ (a + 1/a)³ = 3³
↪a³ + 1/a³ + 3 * a * 1/a ( a + 1/a) = 27
↪a³ + 1/a³ + 3( a + 1/a) = 27
↪a³ + 1/a³ + 3*3 = 27
↪(a³ + 1/a³) = 27 - 9
↪ (a³ + 1/a³) = 18
____________________________
Similar questions