Math, asked by rg123edit, 9 months ago

if a^2-3a+1=10 find a^3+1/a^3​

Answers

Answered by RvChaudharY50
25

Given :-

  • a² - 3a + 1 = 0

To Find :-

  • (a³ + 1/a³) = ?

Formula used :-

  • (a + b)³ = a³ + b³ + 3ab(a + b)

Solution :-

→ a² - 3a + 1 = 0

Taking a common ,

a (a - 3 + 1/a) = 0

→ (a - 3 + 1/a) = 0

→ (a + 1/a) = 3 ------------- Equation (1)

Cubing Both sides now,

(a + 1/a)³ = 3³

using (a + b)³ = a³ + b³ + 3ab(a + b) in LHS,

a³ + 1/a³ + 3 * a * 1/a ( a + 1/a) = 27

→ a³ + 1/a³ + 3( a + 1/a) = 27

Putting value of Equation (1) now,

a³ + 1/a³ + 3*3 = 27

→ (a³ + 1/a³) = 27 - 9

→ (a³ + 1/a³) = 18 (Ans.) .

Answered by Anonymous
93

___________________________

\huge\tt{GIVEN:}

  • a^2-3a+1=10

___________________________

\huge\tt{TO~FIND:}

  • a^3+1/a^3

___________________________

\huge\tt{SOLUTION:}

↪ a (a - 3 + 1/a) = 0

↪ (a - 3 + 1/a) = 0

↪(a + 1/a) = 3 _____(EQ.1)

↪ (a + 1/a)³ = 3³

↪a³ + 1/a³ + 3 * a * 1/a ( a + 1/a) = 27

↪a³ + 1/a³ + 3( a + 1/a) = 27

↪a³ + 1/a³ + 3*3 = 27

↪(a³ + 1/a³) = 27 - 9

↪ (a³ + 1/a³) = 18

____________________________

Similar questions