if a^2- 3a =1 find the value of
(i). a-1/a
(ii) a+1/a
Dear if u knw the answer plz let me knw asap!!
Answers
Step-by-step explanation:
Given :-
a²-3a = 1
To find :-
find the value of the following :
(i). a-1/a
(ii) a+1/a
Solution :-
Given Quadratic equation is a²-3a = 1
It can be written as
=> a²-(2/2)(3a) = 1
=> a²-2(a)(3/2) = 1
On adding (3/2)² both sides then
=> a²-2(a)(3/2)+(3/2)² = 1+(3/2)²
=> [a-(3/2)]² = 1+(9/4)
Since (a-b)² = a²-2ab+b²
=> [a-(3/2)]² = (4+9)/4
=> [a-(3/2)]² = 13/4
=> a-(3/2) = ±√(13/4)
=> a -(3/2) = ±√13 /2
=> a = (±√13/2)+(3/2)
=> a = (±√13+3)/2
=> a = (√13+3)/2 or (-√13+3)/2
Now, Take a = (√13+3)/2 then
=> 1/a = 1/[ (√13+3)/2 ]
=> 1/a = 2/(√13+3)
The Rationalising factor of√13+3 is √13-3
=> 1/a = [2/(√13+3)]×[(√13-3)/(√13-3)]
=> 1/a = [2×(√13-3)]/[(√13+3)(√13-3)]
=> 1/a = [ 2×(√13-3)]/[(√13)²-(3)²]
Since, (a+b)(a-b) = a²-b²
=> 1/a = [2×(√13-3)]/(13-9)
=> 1/a = [2×(√13-3)]/4
=> 1/a = (√13-3)/2 -----------(1)
Now,
i)a-(1/a)
=> [(√13+3)/2 ]- [(√13-3)/2]
=> [(√13+3)-(√13-3)]/2
=> (√13+3-√13+3)/2
=> (3+3)/2
=> 6/2
=> 4
a-(1/a) = 4
and
ii) a+(1/a)
=> [(√13+3)/2 ]+ [(√13-3)/2]
=> [(√13+3)+(√13-3)]/2
=> (√13+3+√13-3)/2
=> (√13+√13)/2
=>2√13/2
=> √13
a+(1/a) = √13
Answer:-
i) The value of a-(1/a) is 4
ii) The value of a+(1/a) is √13
Used formulae:-
→(a-b)² = a²-2ab+b²
→(a+b)(a-b) = a²-b²
→The Rationalising factor of√a+b is √a-b
→The Rationalising factor of√a-b is √a+b
Note :-
If we take a = (-√13+3)/2 then we get same values for a-(1/a) and a+(1/a).
Used Method:-
→Completing the square method
Answer:
shjsjssjsj me garib mere ghar me hazaro chitiya raheti hai unke liye bhar pet khana lao
Step-by-step explanation:
- I AM A SPAMMER
- YOU ARE NOOB
- GALIYA
- LOL