Math, asked by SrishtiMotwani53421, 11 months ago

If a(-2,4) , b(0,0) , c(14,2) are the vertices of ∆abc then coordinates of centroid of ∆abc are

Answers

Answered by BrainlyConqueror0901
31

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\bold{\therefore{\text{Centroid\:G=(4,2)}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green  {\underline{\bold{Given : }}} \\  \implies  \text{Coordinate \: of \: a \: (-2,4)} \\  \\  \implies  \text{Coordinate \: of \: b\: (0,0)} \\  \\ \implies  \text{Coordinate \: of \: c \: (14,2)} \\  \\ \red {\underline{\bold{to \: find : }}} \\  \implies \text{coordinate \: of \: G \:  =?}

• According to given question :

Consider abc a triangle with vertices and their coordinates are given.

• Take centroid as G.

• whose coordinates are (x,y)

 \text{Using \: centroid \: formula \: of \: triangle } \\  \implies x =  \frac{ x_{1} +x_{2} +x_{3} }{3}  \\  \\  \implies x =  \frac{ - 2 + 0 + 14}{3}  \\  \\  \implies x =  \frac{12}{3}  \\  \\   \green{\implies x = 4} \\  \\ \text{Similarly \: for \: ordinate \: y} \\  \implies y =  \frac{ y_{1} +y_{2} +y_{3} }{3} \\  \\  \implies y =  \frac{4 + 0 + 2}{3}   \\  \\  \implies y =  \frac{6}{3}  \\  \\   \green{\implies y = 2} \\  \\   \green{\therefore  \text{Centroid \: of \: triangle \: G \: (4,2)}}

Answered by Anonymous
8

Answer:

Centroid G = (4,2)

Step - by - step explanation

x = (x1 + x2 + x3)/3

x = (-2 + 0 + 14)/3

x = 4

For y-ordinate -

y = (y1 + y2 + y3)/3

y = (4 + 0 + 2)/ 3

y = 2

@ Therefore Centroid G = (4, 2)

Similar questions