Math, asked by jaiagarwal46131, 10 months ago

If a^2-4a-1=0 then find the value of a^2+1÷a^2

Answers

Answered by Anonymous
2

Question:

If a^2 - 4a - 1 = 0 , then find the value of

a^2 + 1/a^2 .

Answer:

a^2 + 1/a^2 = 18

Note:

• (A+B)^2 = A^2 + B^2 + 2•A•B

• (A-B)^2 = A^2 + B^2 - 2•A•B

• A^2 - B^2 = (A+B)(A-B)

Solution:

We have;

=> a^2 - 4a - 1 = 0

=> a^2 - 1 = 4a

=> a - 1/a = 4 ------------(1)

Squaring both sides of eq-(1) , we get;

=> (a - 1/a)^2 = 4^2

=> a^2 + 1/a^2 - 2•a•(1/a) = 16

=> a^2 + 1/a^2 - 2 = 16

=> a^2 + 1/a^2 = 16 + 2

=> a^2 + 1/a^2 = 18

Hence,

The required value of a^2 + 1/a^2 is 18.

Answered by Anonymous
5

Answer:-

\implies \:       \pink{ \boxed{{\green{\boxed{\red{\bf{ {a}^{2}  +  \frac{1}{ {a}^{2} }  = 18}}}}}}} \:

Step - by - step explanation:-

Used identity :-

 \star \:  {(x + y)}^{2}  =  {x}^{2} +  {y}^{2}   + 2xy

Solution :-

According to the question,

 \implies \:  {a}^{2}  - 4a - 1 = 0 \\  \\  \implies \:  {a}^{2}  - 1 = 4a \\  \\  \: \pink{\bf{divided \: by \: \:  a \:  \: on \: both \: sides}} \: \\  \\  \implies \:  \frac{ {a}^{2} }{a}  -  \frac{1}{a}  =  \frac{4a}{a}  \\  \\  \implies \: a -  \frac{1}{a}  = 4 \\  \\   \red{\bf{now \:  squaring \: on \: both \: sides}} \\  \\  \implies \:  { \bigg(a -  \frac{1}{a}  \bigg)} ^{2}  =  {(4)}^{2}  \\  \\  \green{ \bf{using \: the \: given \: identity}} \\  \\  \implies  {a}^{2}  + {  \bigg(\frac{1}{a}  \bigg)}^{2}   - 2 \times a \times  \frac{1}{a} = 16  \\  \\  \implies \:  {a}^{2}  +  \frac{1}{ {a}^{2} }  - 2 = 16 \\  \\  \implies \:  {a}^{2}  +  \frac{1}{ {a}^{2} }  = 16 + 2 \\  \\  \implies \:       \pink{ \boxed{{\green{\boxed{\red{\bf{ {a}^{2}  +  \frac{1}{ {a}^{2} }  = 18}}}}}}}

Hope it helps you.

Similar questions