Math, asked by aayushchess, 8 months ago

If a^2 + 4b^2 + 6a + 4b + 10 = 0, find /

Answers

Answered by mysticd
2

 Given \:a^{2}+4b^{2}+6a+4b+10=0

 \implies a^{2}+6a+9 + 4b^{2}+4b+1 = 0

 \implies [a^{2}+2\times a \times 3 + 3^{2} ]+[(2b)^{2}+2\times 2b\times 1 + 1^{2}] = 0

 \implies ( a + 3 )^{2} + ( 2b + 1 )^{2} = 0

/* By Algebraic Identity */

\boxed{\pink{ x^{2} + 2xy + y^{2} = ( x + y )^{2} }}

 a + 3 = 0 \: and \: 2b + 1 = 0

 \implies a = -3 \: and \: 2b = - 1

 \implies a = -3 \: and \: b = \frac{- 1}{2}

 Now , \red{ Value \: of \: \frac{a}{b} }

 = \frac{(-3)}{\frac{-1}{2}}

 = (-3) \times \frac{2}{(-1)}

 = 6

Therefore.,

 \red{ Value \: of \: \frac{a}{b} } \green { = 6}

•••♪

Similar questions