Math, asked by kahkashasaifi747, 13 days ago

if a=2-√5/2+√5and b =2+√5/2-√5 find a^2+b^2​

Answers

Answered by DaiwikPatel130806
0

Step-by-step explanation:

a=\frac{2-\sqrt{5} }{2+\sqrt{5} }

b=\frac{2+\sqrt{5} }{2-\sqrt{5} }

Now we have to rationalize the denominator of both a and b.

a=\frac{2-\sqrt{5} }{2+\sqrt{5} } *\frac{2-\sqrt{5} }{2-\sqrt{5} } =\frac{4-2\sqrt{5} -2\sqrt{5}+5 }{2^{2}-\sqrt{5} ^{2}  } =\frac{9-4\sqrt{5} }{-1} =-(9-4\sqrt{5} )=-9+4\sqrt{5}

b=\frac{2+\sqrt{5} }{2-\sqrt{5} } *\frac{2+\sqrt{5} }{2+\sqrt{5} } =\frac{4+2\sqrt{5}+2\sqrt{5}+5  }{2^{2}-\sqrt{5} ^{2}  } =\frac{9+4\sqrt{5} }{-1} =-(9+4\sqrt{5} )=-9-4\sqrt{5}

a^{2} +b^{2} =(-9+4\sqrt{5} )^{2} +(-9-4\sqrt{5} )^{2} \\=[(-9)^{2} +2(-9)(4\sqrt{5} )+(4\sqrt{5} )^{2} ]+[(-9)^{2} -2(-9)(4\sqrt{5} )+(4\sqrt{5} )^{2} ]\\=(81-72\sqrt{5} +80)+(81+72\sqrt{5} +80)\\=(161-72\sqrt{5} )+(161+72\sqrt{5} )\\=161-72\sqrt{5} +161+72\sqrt{5} \\=161+161-72\sqrt{5} +72\sqrt{5} \\=322

Answer = 322

Hope this answer helps you.

Please mark this answer as Brainliest if it helped you.

Similar questions