Math, asked by pardeepsingh4, 1 year ago

if a=2+√5 and b=1÷a find a^2+b^2

Answers

Answered by BrainlyQueen01
30

Answer :


48


Step-by-step explanation :


• a = 2 + √5


• b = 1 / a


Find the value of b :


b = 1 / 2 + √5


b = 1 / 2 + √5 × 2 - √5 / 2 - √5


b = 2 - √5 / 2² - (√5)²


b = 2 - √5 / 4 - 5


b = - 2 + √5


b = √5 - 2


Find a + b :


( a + b ) = 2 + √5 + √5 - 2


( a + b ) = √5 + √5


( a + b ) = 2 √ 5


Find a² + b² :


( a + b ) = 2 √ 5


On squaring both sides ;


( a + b )² = ( 2√5 )²


a² + b² + 2 = 20


a² + b² = 20 - 2


a² + b² = 18


Hence, the answer is 18.

Attachments:

Anonymous: what is formula it will be a ^2 + b^2 + 2ab
Anonymous: look
Anonymous: 20- w
Anonymous: 20-2 = 18
Anonymous: siz
pardeepsingh4: yahh its some mistake
BrainlyQueen01: Oh yup
BrainlyQueen01: Edited
pardeepsingh4: thxx.
BrainlyQueen01: Welcome :)
Answered by Anonymous
29
Answer


a = 2 +  \sqrt{5}

b =  \frac{1}{a}


so,

b =  \frac{1}{2 +  \sqrt{5} }


b =  \frac{1  \times( 2 -  \sqrt{5} )}{2 +  \sqrt{5}  \times (2 -  \sqrt{5}) }


b =  \frac{2 -  \sqrt{5} }{ {2}^{2}  - 5}



b =  \frac{2 -  \sqrt{5} }{4 - 5}



b =  \frac{2 -  \sqrt{5} }{ - 1}

b =  \sqrt{5 }  - 2


 {a}^{2}  +  {b}^{2}



so put value of a and b in eq.



 {(2 +  \sqrt{5} )}^{2}  +   { (\sqrt{5 }  - 2)}^{2}
we. get



 {(a  + b)}^{2}  =  {a}^{2}  +  {b}^{2} + 2b

(4 + 5 + 2(4)( \sqrt{5}  )\:  \:  + (4 + 5 +( - 2 \times 4 \times  \sqrt{5} ))



(4 + 5  + 8 \sqrt{5} ) + (4 + 5 - 8 \sqrt{5} )


9 + 9



18 ans
Attachments:

pardeepsingh4: thx so much sister
Anonymous: welcome
Anonymous: :)
Similar questions