Math, asked by aayushmehra2005, 10 months ago

if a^2-5a +1 =0 then find a-1/a​

Answers

Answered by Tanujrao36
48

Question :-

  • Find value of \sf a - \dfrac{1}{a}

Answer :-

  • \sf +\sqrt{21}\:,\:-\sqrt{21}

Explanation :-

Step 1 :-

Factorise the equation and find the value of a from the equation.

\mapsto\sf{\ a^{2}-5a+1=0}

Let the root of the equation be A . So, eqn is

\mapsto\sf{\ A^{2}-5A+1=0}

\bf{Using\: Quadratic\:Formula}

\sf{\boxed{\boxed{A = \dfrac{-b\pm\sqrt{\ b^{2}-4ac}}{2a}}}}

\mapsto\sf{A = \dfrac{-(-5)\pm\sqrt{\ (-5)^{2}-4(1)(1)}}{2(1)}}

\mapsto\sf{A = \dfrac{+5\pm\sqrt{25-4}}{2}}

\mapsto\sf{A = \dfrac{5\pm\sqrt{21}}{2}}

\mapsto\sf{A = \dfrac{5+\sqrt{21}}{2}\:,\:\dfrac{5-\sqrt{21}}{2}}

\sf{ }

Step 2 :-

For finding

\sf{A-\dfrac{1}{A}} put value of A

\implies\sf{A-\dfrac{1}{A}}

For 1st Value of A (+ve)

\implies\sf{\dfrac{5+\sqrt{21}}{2}-\dfrac{2}{5+\sqrt{21}}}

\implies\sf{\dfrac{\ (5+\sqrt{21})^{2}-4}{2(5+\sqrt{21})}}

\implies\sf{\dfrac{25+21+10\sqrt{21}-4}{10+2\sqrt{21}}}

\implies\sf{\dfrac{42+10\sqrt{21}}{10+2\sqrt{21}}}

\implies\sf{\dfrac{\cancel{2}(21+5\sqrt{21})}{\cancel{2}(5+\sqrt{21}}}

\implies\sf{\dfrac{ \sqrt{21}\cancel{(\sqrt{21}+5)}}{\cancel{(5+\sqrt{21})}}}

\sf{\boxed{\sqrt{21}}}

__________________________________

For 2nd Value of A (+ve)

\implies\sf{\dfrac{5-\sqrt{21}}{2}-\dfrac{2}{5-\sqrt{21}}}

\implies\sf{\dfrac{\ (5-\sqrt{21})^{2}-4}{2(5-\sqrt{21})}}

\implies\sf{\dfrac{25+21-10\sqrt{21}-4}{10-2\sqrt{21}}}

\implies\sf{\dfrac{42-10\sqrt{21}}{10-2\sqrt{21}}}

\implies\sf{\dfrac{\cancel{2}(21-5\sqrt{21})}{\cancel{2}(5-\sqrt{21}}}

\implies\sf{\dfrac{ \sqrt{21}\cancel{(\sqrt{21}-5)}}{\cancel{(5-\sqrt{21})}}}

\sf{\boxed{-\sqrt{21}}}

__________________________________

In the Answer we assume a = A

Answered by InfiniteSoul
4

\sf{\huge{\bold{\pink{\bigstar{\boxed{\boxed{Question}}}}}}}

 if \: a^2 - 5a + 1 = 0

 find\: a - \dfrac{1}{a}

\sf{\huge{\bold{\pink{\bigstar{\boxed{\boxed{Solution}}}}}}}

 \implies a^2 - 5a + 1 = 0

  • Divide whole equation by a

\implies \dfrac{a^2}{a} - \dfrac{5a}{a} + \dfrac{1}{a} = \dfrac{0}{a}

\implies a  - 5 + \dfrac{1}{a}  = 0

\implies a + \dfrac{1}{a} = 5

\sf{\bold{\red{\boxed{(a + \dfrac{1}{a})^2 - (a - \dfrac{1}{a})^2 = 4a \dfrac{1}{a}}}}}

\implies 5^2 - (a - \dfrac{1}{a})^2= 4

\implies 25 - (a- \dfrac{1}{a})^2 = 4

\implies ( a - \dfrac{1}{a})^2 = 21

\implies (a - \dfrac{1}{a}) = \sqrt{21}

\sf{\bold{\red{\boxed{\dag ( a -\dfrac{1}{a} )=\sqrt{21}}}}}

__________________❤

Similar questions