Math, asked by rikdas914, 9 months ago

if a^2=5a-3,b^2=5b-3 (a not equal to b) then

a) a+b =5,ab=3
b)a+b=-5,ab=3
c)a+b=-5,ab=-3
d)a+b= 5,ab=-3

Answers

Answered by shloksinha2
2

Answer:

a^{2}-b^{2}

(a+b)(a-b)=5a-3-5b+3

(a+b)(a-b)=5a-5b

(a+b)(a-b)=5(a-b)

a+b=5

Now;

(a+b)^{2}=a^{2}+b^{2}+2ab

=5^{2}=5a-3+5b-3+2ab

=25+6=5(a+b)+2ab

=19=5*5+2ab

=19-25=2ab

=-6=2ab

Hence ;

ab= -6/2

   =   -3

So,

a+b=5,ab=-3

Therefore The correct answer is Option D.

Answered by venkatavineela3
2

Answer:

Step-by-step explanation:

a^2-5a+3=0

b^2-5b+3=0

----------------------------

a^2-b^2-5a+5b=0

a^2-b^2=5a-5b

(a-b)(a+b)=5(a-b)

a+b=5

squaring on both sides

a^2+b^2+2ab=25

5a-3+5b-3+2ab=25

5(a+b)-6+2ab=25

25-6+2ab=25

2ab=6

ab=3

option(a)

Similar questions