Math, asked by sathiyapriya769, 11 months ago

if A=2^65 and B=2^64+2^63+...+2^1+2^0 and c=2^64+2^63+...+2^2+2^1 prove that 2A=B+C+3

Answers

Answered by syerule61
6

Answer:

Step-by-step explanation:

Attachments:
Answered by rahul123437
1

Proved that 2A=B+C+3.

Given:

A=2^{65}

B= 2^6^4+2^6^3+...+2^2+2^1 + 1

c= 2^6^4+2^6^3+...+2^2+2^1

To find:

Prove that  2A=B+C+3

Explanation:

To prove above equation we can compare left hand side and right hand side.

Left hand side, = 2A

                          =2×2^{65} = 2^{66}

Right hand side = B+C+3

                          = ( 2^6^4+2^6^3+...+2^2+2^1)+( 2^6^4+2^6^3+...+2^2+2^1+ 1) + 3

                          = 2× ( 2^6^4+2^6^3+...+2^2+2^1) +1+ 3

                          =2^6^5+2^6^4+...+2^2+2^1 =4

         2^6^5+2^6^4+...+2^2+2^1 This is geometric progression.

Sum of GP = \frac{a (r^{n-1})}{n-1}   a = first term = 2

                                  r = Common ratio = 2

                                  n = no. of terms = 65

Sum of GP =  \frac{a (r^{n-1})}{r-1}  = \frac{2 (2^{65-1})}{2-1}

                 = 2^{66} -4

            Right hand side = 2× ( 2^6^4+2^6^3+...+2^2+2^1) +4

                                       =  2^{66} -4 + 4

                                       =  2^{66}

Left hand side =  Right hand side

Hence proved...

To learn more.....

1) In an infinite geometric progression,the sum of first two terms is 6 and every term is four times the sum of all the terms that follow it.find 1. The geometric progression 2.its sum to infinity. Plz help

https://brainly.in/question/38168

2 For each geometric progression find the common ratio ‘r’, and then find an(i) 3, 3/2, 3/4, 3/8, ......... (ii) 2, −6, 18, −54(iii) −1, −3, −9, −18 .... (iv) 5, 2, 4/5, 8/25, .........

https://brainly.in/question/5483880

Similar questions