Math, asked by sunayana1, 1 year ago

If a^2+9/a ^2=31 what is the value a-3/a

Answers

Answered by TPS
43
a^2+ \frac{9}{a^2}=31\\ \\ \Rightarrow a^2+ \frac{9}{a^2}-6=31-6\\ \\ \Rightarrow (a)^2+ (\frac{3}{a})^2-2 \times a \times  \frac{3}{a} =25\\ \\ \Rightarrow (a- \frac{3}{a})^2 =25\\ \\ \Rightarrow a- \frac{3}{a}= \pm \sqrt{25} = \pm 5

Value of a-(3/a) can be 5 or -5.
Answered by harendrachoubay
26

a-\dfrac{3}{a}=5

Step-by-step explanation:

We have,

a^2+\dfrac{9}{a^2} =31

To find, a-\dfrac{3}{a}=?

Using identity,

(a-b)^{2}=a^{2}+b^{2}-2ab

(a-\dfrac{3}{a})^{2}=a^{2}+(\dfrac{3}{a})^{2}-2a(\dfrac{3}{a})

(a-\dfrac{3}{a})^{2}=a^{2}+\dfrac{9}{a^2}-2(3)

(a-\dfrac{3}{a})^{2}=a^{2}+\dfrac{9}{a^2}-6     ....... (1)

Put a^2+\dfrac{9}{a^2} =31 in (1), we get

(a-\dfrac{3}{a})^{2}=31-6

(a-\dfrac{3}{a})^{2}=25

(a-\dfrac{3}{a})^{2}=5^2

a-\dfrac{3}{a}=5

Hence, a-\dfrac{3}{a}=5

Similar questions