if a = -2 and b = -3, then identify the highest value,
(A) ab
(B) (a + b)
(C) b(a + b)
(D) (a² + b²)
Answers
Answered by
0
a=-2, b = -3
ab = 6
a+b = -5
b(a+b) = (-3) * (-5) = 15
a² + b² = 4 + 9 = 13
so (C)b(a+b) has highest value
ab = 6
a+b = -5
b(a+b) = (-3) * (-5) = 15
a² + b² = 4 + 9 = 13
so (C)b(a+b) has highest value
Answered by
0
a) ab
(-2)(-3)
= 6
b) (a+b)
((-2) + (-3))
= -5
c) b(a+b)
-3((-2) + (-3))
-3(-5)
15
d) a square + b square
(-2) square + (-3) square
4 + 9
=13
therefore the highest value is b(a +b)
(-2)(-3)
= 6
b) (a+b)
((-2) + (-3))
= -5
c) b(a+b)
-3((-2) + (-3))
-3(-5)
15
d) a square + b square
(-2) square + (-3) square
4 + 9
=13
therefore the highest value is b(a +b)
Similar questions