Math, asked by shethurja2005, 11 months ago

if a^2 +b^2+1/a^2+1/b^2=4 find root a^2+b^2?

Answers

Answered by saounksh
1

ᴀɴsᴡᴇʀ

  • \red{\boxed{\sqrt{a^2+b^2} = \sqrt{2}} }

ᴇxᴘʟᴀɪɴᴀᴛɪᴏɴ

Here

 \:\:\:\:\:\:\:\:\:\:a^2 +b^2+\frac{1}{a^2} +\frac{1}{b^2} =4

\implies [a^2 + \frac{1}{a^2}-2]

\:\:\:\:\:\:\:+[b^2 +\frac{1}{b^2} -2]=0

\implies [a^2 + \frac{1}{a^2}-2a.\frac{1}{a}]

\:\:\:\:\:\:\:+[b^2 +\frac{1}{b^2} -2b.\frac{1}{b}]=0

\implies [a- \frac{1}{a}]^2 +[b-\frac{1}{b}]^2 = 0

Since

  •  [a- \frac{1}{a}]^2 ≥ 0 and

  •  [b- \frac{1}{b}]^2 ≥ 0

The above equation is possible only if both terms are zero.

\implies [a- \frac{1}{a}]^2 = 0, [b-\frac{1}{b}]^2 = 0

\implies a- \frac{1}{a} = 0, b-\frac{1}{b} = 0

\implies a = \frac{1}{a}, b = \frac{1}{b}

\implies a^2 = 1, b^2 = 1

Therefore

\:\:\:\: \sqrt{a^2+b^2}

= \sqrt{1 + 1}

= \sqrt{2}

Similar questions