Math, asked by tarunkondepnt, 1 month ago

if a^2+b^2=22ab prove that 2log(a+b)=3log2+log3+loga+logb​

Answers

Answered by bipulpandit2006
0

Answer:

Step-by-step explanation:

Given that a2+b2=7ab

                  adding 2ab on both sides . we get

                        a2+b2+2ab=9ab    

                    it can be written as (a+b)2  

then               (a+b)2= 3^(2) ab

                            applying log on both sides we get

                        log(a+b)^2 = log3(^2)ab

                            so,

                           2log(a+b)=log a+log b+ 2log3      [since log m^n= n log m]

          hence proved

Similar questions