Math, asked by Edison5110, 10 months ago

If a^2+b^2=23ab show that log a+b/5=1/2(log a+log b )

Answers

Answered by allysia
8


We have,

 {a}^{2}  +  {b}^{2}  = 23ab


Adding 2ab both sides,

 { a}^{2}  +  {b}^{2}  + 2ab = 25ab \\  \\  {(a + b)}^{2}  =  25ab \\  \\ a + b = 5 \sqrt{ab}


We have,

 log(a + b)  \\

Substituing the values,
 log(5 \sqrt{ab} )  \\  \\  =  log(5) +  log( \sqrt{ab} )   \\  \\  =  log(5)  +  log( {ab}^{ \frac{1}{2} } )  \\  \\  =  log(5)  +  \frac{1}{2}  log(ab)  \\  \\  =  log(5)  +  \frac{1}{2} ( loga  +  logb )


Hence your answer.
Similar questions