Math, asked by ManakaLaala, 1 year ago

If a^2+b^2=25 and ab+bc+ca=3, find a+b+c.


siddhartharao77: it should be a^2 + b^2 + c^2 = 25.

Answers

Answered by siddhartharao77
1
Given a^2 + b^2 + c^2 = 25 and ab + bc + ca = 3.

Now,

We know that (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca

                                             = 25 + 2(ab + bc + ca)

                                             = 25 + 2(3)

                                             = 31.


(a + b + c) =  \sqrt{31}


Hope this helps!

siddhartharao77: :-)
siddhartharao77: Thank You So Much for brainliest
AnamSiddiqui28: wlcm
Answered by AnamSiddiqui28
5
a^2 + b^2 + c^2 =25

ab+bc+ca=3

(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)

⇒ (a+b+c)^2 = 25+ 2(3)


⇒ (a+b+c)^2 = 25+6

⇒ (a+b+c)^2 = 31

⇒ a+b+c = \pm± √31





Similar questions