If a^2+b^2=25 and ab+bc+ca=3, find a+b+c.
siddhartharao77:
it should be a^2 + b^2 + c^2 = 25.
Answers
Answered by
1
Given a^2 + b^2 + c^2 = 25 and ab + bc + ca = 3.
Now,
We know that (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
= 25 + 2(ab + bc + ca)
= 25 + 2(3)
= 31.
(a + b + c) =
Hope this helps!
Now,
We know that (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
= 25 + 2(ab + bc + ca)
= 25 + 2(3)
= 31.
(a + b + c) =
Hope this helps!
Answered by
5
a^2 + b^2 + c^2 =25
ab+bc+ca=3
(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)
⇒ (a+b+c)^2 = 25+ 2(3)
⇒ (a+b+c)^2 = 25+6
⇒ (a+b+c)^2 = 31
⇒ a+b+c = \pm± √31
ab+bc+ca=3
(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)
⇒ (a+b+c)^2 = 25+ 2(3)
⇒ (a+b+c)^2 = 25+6
⇒ (a+b+c)^2 = 31
⇒ a+b+c = \pm± √31
Similar questions