if a^2+b^2=41 and ab=4, find the value of a+b
Answers
Answered by
37
Hey friend ☺ here is the answer __________________________
(a + b)² = a² + b² + 2ab
Now
a² + b² = 41 and ab = 4
(a + b)² = 41 + 2×4 = 41 + 8 = 49
(a + b)² = 49
a + b = √49
a + b = 7
Hope this helps you..
(a + b)² = a² + b² + 2ab
Now
a² + b² = 41 and ab = 4
(a + b)² = 41 + 2×4 = 41 + 8 = 49
(a + b)² = 49
a + b = √49
a + b = 7
Hope this helps you..
sweety1422548:
hi sis
Answered by
28
Answer :-
a + b = 7
Solution :-
We know that
(a + b)² = a² + b² + 2ab
Here ab = 4
a² + b² = 41
By substituting the values
⇒ (a + b)² = (41) + 2(4)
⇒ (a + b)² = 41+ 8
⇒ (a + b)² = 49
⇒ a + b = √49
⇒ a + b = 7
Verification :-
(a + b)²= a² + b² + 2ab
⇒ (7)² = (41) + 2(4)
⇒ 49 = 41 - 8
⇒ 49 = 49
Therefore a + b = 7
Identity used :-
• (a + b)² = a² + b² + 2ab
Extra Information :-
Some Important Identities :-
• (x + y)² = x² + y² + 2xy
• (x - y)² = x² + y² - 2xy
• (x + y)(x - y) = x² - y²
• (x + a)(x + b) = x² + (a + b)x + ab
• (x + y + z)² = x² + y² + z² + 2xy + 2yz + 2xz
Similar questions