Math, asked by RakibRoy, 1 year ago

if a^2+b^2=41 and ab =4, find the value of a-b

Answers

Answered by Anonymous
29

Answer :-

a - b = √33

Solution :-

We know that

(a - b)² = a² + b² - 2ab

Here ab = 4

a² + b² = 41

By substituting the values

⇒ (a - b)² = (41) - 2(4)

⇒ (a - b)² = 41 - 8

⇒ (a - b)² = 33

⇒ a - b = √33

Verification :-

(a - b)²= a² + b² - 2ab

⇒ (√33)² = (41) - 2(4)

⇒ 33 = 41 - 8

⇒ 33 = 33

Therefore a - b = √33

Identity used :-

• (a - b)² = a² + b² - 2ab

Extra Information :-

Some Important Identities :-

• (x + y)² = x² + y² + 2xy

• (x - y)² = x² + y² - 2xy

• (x + y)(x - y) = x² - y²

• (x + a)(x + b) = x² + (a + b)x + ab

• (x + y + z)² = x² + y² + z² + 2xy + 2yz + 2xz

Answered by rizvinaazfatima
10

Answer:

Step-by-step explanation:

SOLUTION:

(a-b)^2 = a^2 + b^2 + 2ab

REMEMBER:- a^2 - b^2 = 41, ab = 4

(a - b)^2 = 41 - 2 * 4

(a - b)^2 = 41 - 8 = 33

a-b = under root 33

a-b = approximately 6.

I HOPE IT HELPS YOU.

PLEASE MARK AS A BRAINLIEST.                                                                                  

Similar questions