Math, asked by shahinahussain575, 9 months ago

if a^2+b^2 =5 and a^2b^2 =3 find the value of a^4+b^4​

Answers

Answered by hanzala006
3

Step-by-step explanation:

Given -

+=5

b²=3

now,

(a²+b²)²=5² (squaring both sides)

a^4+b^4+2a²=25

a^4+b^4+2×3=25. (a²b²=3 given)

a^4+b^4+6=25

a^4+b^4=25-6

a^4+b^4=19

hope this will help you

please mark as brainliest

Answered by Anonymous
15

\green{\bold{\underline{ ☆        UPSC-ASPIRANT ☆} }}

\red{\bold{\underline{\underline{QUESTION:-}}}}

Q:-if a^2+b^2 =5 and a^2b^2 =3 find the value of a^4+b^4

\huge\tt\underline\blue{ANSWER }

------>>>>Here is your answer<<<<--------

➾ {a}^{2}  +  {b}^{2}  = 5

➾ {a}^{2}  {b}^{2}  = 3

➾squaring \: both \: sides

➾ {( {a}^{2}  +  {b}^{2} )}^{2}  =  {a}^{4}  +  {b}^{4}  + 2 {a}^{2}  {b}^{2}

➾ {(5)}^{2}  =  {a}^{4}  +  {b}^{4}  + 2 \times 3

➾25 =  {a}^{4}  +  {b}^{4}   +  6

➾25 - 6 =  {a}^{4}  +  {b}^{4}

➾ {a}^{4}  +  {b}^{4}  = 19✓

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Similar questions