Math, asked by Anonymous, 2 months ago

if a^2 + b^2 = 8 and ab = 6 find a+ b, a - b, a^2 - b^2 and 3(a + b) ^2 - 2(a - b) ^2​

Answers

Answered by sandy1816
1

 {a}^{2}  +  {b}^{2}  = 8 \\ ( {a + b})^{2}   - 2ab = 8 \\ ( {a + b})^{2}  - 12 = 8 \\ ( {a + b})^{2}  = 20 \\ \implies a + b = 2 \sqrt{5} ...(1) \\  {a}^{2}  +  {b}^{2}  = 8 \\ ( {a - b})^{2}  + 2ab = 8 \\ ( {a - b})^{2}  + 12 = 8 \\ ( {a - b})^{2}  = -4 \\ \implies a - b = 2i...(2) \\  \\  {a}^{2}  -  {b}^{2}  = (a - b)(a + b) \\  = 2i \times 2 \sqrt{5}   \\  = 4 \sqrt{5}i  \\  \\ 3( {a + b})^{2}  - 2( {a - b})^{2}   \\  = 3( {2 \sqrt{5} })^{2}  - 2( {2i})^{2}  \\  = 3(20) + 2 \times 4 \\  = 60 +8 \\  = 68

Answered by juwairiyahimran18
1

hopefully its helped u :)

Attachments:
Similar questions