Math, asked by rahikaamber2145, 4 months ago

If a^2+ b^2 = 9 and ab = 4.
Find the value of 3(a + b)^2 - 2(a - b)^2​

Answers

Answered by Ladylaurel
3

Answer :

The value of 3 ( a + b )² - 2 ( a - b )² is 49

Step-by-step explanation :

To Find,

  • The value of 3 ( a + b )² - 2 ( a - b )²

Solution,

Given that,

  • a² + b² = 9
  • ab = 4

Therefore,

⟹ 3 ( a + b )² - 2 ( a - b )²

⟹ 3 ( a² + b² + 2ab ) - 2 ( a² + b² - 2ab )

⟹ 3 ( 9 + 2 × 4 ) - 2 ( 9 - 2 × 4 )

⟹ 3 ( 9 + 8 ) - 2 ( 9 - 8 )

⟹ 3 ( 17 ) - 2 ( 1 )

⟹ 3 × 17 - 2 × 1

⟹ 51 - 2 × 1

⟹ 51 - 2

49

Now, Verification

3 ( a + b )² - 2 ( a - b )² = 49

By putting the values,

⟹ 3 ( a + b )² - 2 ( a - b )² = 49

⟹ 3 ( a² + b² + 2ab ) - 2 ( a² + b² - 2ab ) = 49

⟹ 3 ( 9 + 2 × 4 ) - 2 ( 9 - 2 × 4 ) = 49

⟹ 3 ( 9 + 8 ) - 2 ( 9 - 8 ) = 49

⟹ 3 ( 17 ) - 2 ( 1 ) = 49

⟹ 3 × 17 - 2 × 1 = 49

⟹ 51 - 2 = 49

⟹ 49 = 49

L.H.S = R.H.S

Hence, Verified !

Answered by Anonymous
3

 \\  \\ \large\underline{ \underline{ \sf{ \red{given:} }}}  \\  \\

  • a² + b² = 9

  • ab = 4

 \\  \\ \large\underline{ \underline{ \sf{ \red{ to \: find:} }}}  \\  \\

  • 3 ( a + b )² - 2 ( a - b )²

 \\  \\ \large\underline{ \underline{ \sf{ \red{solution:} }}}  \\  \\

 \implies \sf \: 3( {a + b)}^{2}  - 2( {a - b)}^{2}  \\  \\  \\   \bigstar\boxed{ \bf \: {(x + y)}^{2}  =  {x}^{2}   +  {y}^{2} + 2xy } \\  \\   \bigstar\boxed{ \bf \:( {x - y)}^{2} =  {x}^{2}  +  {y}^{2} - 2xy  } \\  \\  \\ \implies  \sf \: 3( {a}^{2}  +  {b}^{2}  + 2ab) - 2( {a}^{2}  +  {b}^{2}  - 2ab) \\

We know ,

  • a² + b² = 9

  • ab = 4

Putting values ,

 \\ \implies  \sf \: 3(9 + 2(4)) - 2(9 - 2(4)) \\  \\  \\  \implies \sf \: 3(9 + 8) - 2(9 - 8) \\  \\  \\   \implies\sf \: 3(17) - 2(1) \\  \\  \\   \implies\sf \: 51 - 2 \\  \\  \\  \sf \: \implies \blue{ 49} \\

Hence , required answer is 49.

ㅤㅤ ㅤㅤ

ㅤㅤ

More identities :-

  • ( a + b ) ( a - b ) = a² - b²

  • ( a + x ) ( a + y ) = a² + ( x + y )a + xy

  • ( a + b )³ = a³ + 3a²b + 3ab² + b³
Similar questions