If a^2+ b^2 = 9 and ab = 4.
Find the value of 3(a + b)^2 - 2(a - b)^2
Answers
Answered by
3
Answer :
The value of 3 ( a + b )² - 2 ( a - b )² is 49
Step-by-step explanation :
To Find,
- The value of 3 ( a + b )² - 2 ( a - b )²
Solution,
Given that,
- a² + b² = 9
- ab = 4
Therefore,
⟹ 3 ( a + b )² - 2 ( a - b )²
⟹ 3 ( a² + b² + 2ab ) - 2 ( a² + b² - 2ab )
⟹ 3 ( 9 + 2 × 4 ) - 2 ( 9 - 2 × 4 )
⟹ 3 ( 9 + 8 ) - 2 ( 9 - 8 )
⟹ 3 ( 17 ) - 2 ( 1 )
⟹ 3 × 17 - 2 × 1
⟹ 51 - 2 × 1
⟹ 51 - 2
⟹ 49 ★
Now, Verification
3 ( a + b )² - 2 ( a - b )² = 49
By putting the values,
⟹ 3 ( a + b )² - 2 ( a - b )² = 49
⟹ 3 ( a² + b² + 2ab ) - 2 ( a² + b² - 2ab ) = 49
⟹ 3 ( 9 + 2 × 4 ) - 2 ( 9 - 2 × 4 ) = 49
⟹ 3 ( 9 + 8 ) - 2 ( 9 - 8 ) = 49
⟹ 3 ( 17 ) - 2 ( 1 ) = 49
⟹ 3 × 17 - 2 × 1 = 49
⟹ 51 - 2 = 49
⟹ 49 = 49
L.H.S = R.H.S
Hence, Verified !
Answered by
3
- a² + b² = 9
- ab = 4
- 3 ( a + b )² - 2 ( a - b )²
We know ,
- a² + b² = 9
- ab = 4
Putting values ,
Hence , required answer is 49.
ㅤㅤ ㅤㅤ
ㅤㅤ
More identities :-
- ( a + b ) ( a - b ) = a² - b²
- ( a + x ) ( a + y ) = a² + ( x + y )a + xy
- ( a + b )³ = a³ + 3a²b + 3ab² + b³
Similar questions