Math, asked by Yusuf493, 1 year ago

If a^2 +b^2=ab find a^3+b^3

Answers

Answered by Robin0071
0

Step-by-step explanation:

 \bold{given \: by \:(  {a}^{2}  +  {b}^{2}  = ab}) \\  \bold{let} \:  \bold{ {(a + b)}^{2}  - 2ab \: = ( {a}^{2}  +  {b}^{2} )} \\ \:  \bold{ {(a + b)}^{2}  =  2ab + ab} \\ \bold{ {(a + b)}^{2}  =  3ab}   \\ (a + b) =  \sqrt{3ab} \\ now \\ \bold{we \: find \: us \:  \:  {a}^{3} +   {b}^{3} } \\  {a}^{3}  +  {b}^{3}  =  {(a + b)}^{3}   +  3ab(a + b) \\  =  { \sqrt{3ab} }^{3}  + 3ab \times  \sqrt{3ab}  \\  =  2(  { \sqrt{3ab} )}^{3}

Similar questions