If a^2 + b^2 + c^2 = 1, then which of the following cannot be a value of (ab + bc + ca)?
A. 0
B. 1/2
C. -1/4
D. -1
Answers
Answer
(a+b+c)² = a²+b²+c²+2(ab +bc+ca)
(a+b+c) >= 0
for any real value of a , b and c
a²+b²+c²+2(ab+bc+CA) >= 0
1 + 2(ab + bc + ca ) >=0
ab + BC + ca >= -1/2.
or
(a-b)² +(b-c)² + (c-a)² >=0
2(a²+b²+c²-ab-bc-ac) >=0
2(1-ab+bc+ca) >=0
ab+bc+ca<=1
so answer Will be (-1/2 or 1 )
a² + b² + c² = 1
___________ [ GIVEN ]
• We have to find the value of (ab + bc + ca)
__________________________
We have a² + b² + c² = 1.
ab + bc + ca = ?
We know that..
→ (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
Take 2 common
→ a² + b² + c² + 2(ab + bc + ca)
Now put value of a² + b² + c² above
→ (1) + 2(ab + bc + ca)
→ 1 + 2(ab + bc + ca)
→ 2(ab + bc + ca) = - 1
→ ab + bc + ca = -1/2
But the given options are
A. 0
B. 1/2
C. -1/4
D. -1
It means that none of the option is correct.
__________________________
ab + bc + ca = -1/2
_______ [ ANSWER ]
__________________________