Math, asked by soham6625610, 1 month ago

if a^2+b^2+c^2 +170 = 2(8a+5b-9c) then find the value of (4a+8b-c)^0.5

Answers

Answered by hv634
0

Answer:

okookooookkokkkkkookkkookk

Answered by pulakmath007
1

SOLUTION

GIVEN

 \displaystyle \sf{ {a}^{2} +  {b}^{2} +  {c}^{2}  = 2(8a + 5b - 9c)  }

TO DETERMINE

The value of

 \displaystyle \sf{ {(4a + 8b - c)}^{0.5}   }

EVALUATION

 \displaystyle \sf{ {a}^{2} +  {b}^{2} +  {c}^{2}  = 2(8a + 5b - 9c)  }

 \displaystyle \sf{  \implies \: {a}^{2} +  {b}^{2} +  {c}^{2}   -  2(8a + 5b - 9c) = 0  }

 \displaystyle \sf{  \implies \: {a}^{2} - 16a + 64 +  {b}^{2}  - 10b + 25+  {c}^{2}  + 18c + 81 = 0  }

 \displaystyle \sf{  \implies \: {(a  - 8)}^{2}  +  {(b - 5)}^{2}  +  {(c + 9)}^{2} = 0  }

We know if the sum of the squares of three Real Numbers are zero then they are separately zero

Thus we get

a - 8 = 0 , b - 5 = 0 , c + 9 = 0

Consequently we get

a = 8 , b = 5 , c = - 9

 \displaystyle \sf{ {(4a + 8b - c)}^{0.5}   }

 \displaystyle \sf{  = {(32 + 40  + 9)}^{0.5}   }

 \displaystyle \sf{  = {(81)}^{0.5}   }

 \displaystyle \sf{  = {(81)}^{ \frac{1}{2} }   }

 = 9

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. solve: 49³-30³+(....)³= 3 × 49 × 30 × 19

https://brainly.in/question/17577612

2. If x+1/x=3 then, x^7+1/x^7=

https://brainly.in/question/23295932

Similar questions