Math, asked by ankita7026, 11 months ago

If a^2+b^2+c^2=20 and a+b+c=8, find the value of ab+bc+ca?​

Answers

Answered by Anonymous
2

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large\mathfrak{\underline{\underline{\huge\mathcal{\bf{\boxed{\huge\mathcal{~~QUESTION~~}}}}}}}

  • If a^2+b^2+c^2=20 and a+b+c=8, find the value of ab+bc+ca?

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large\mathfrak{\underline{\underline{\huge\mathcal{\bf{\boxed{\huge\mathcal{!!ANSWER!!}}}}}}}

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large\mathfrak{\large\mathcal{\bf{\boxed{\large\mathcal{~~~22~~}}}}}

______________________________________________

 \:\:  \underline{\underline{\bf{\large\mathfrak{~~solution~~}}}}

a {}^{2}  + b {}^{2}  + c {}^{2}  = 20

and

a + b + c = 8

now....the formula is ...

(a + b + c) {}^{2}  = a {}^{2}  + b {}^{2}  + c {}^{2}  + 2(ab + bc + ca)

so therefore....

ab + bc + ca =  \frac{(a + b + c) {}^{2}  - (a {}^{2} + b {}^{2} + c {}^{2}   }{2}  \\  =  > ab + bc + ca =  \frac{8 {}^{2}  - 20}{2}  \\  =  > (ab + bc + ca) = 22

\huge\mathcal\green{\underline{hope\:\: this\:\: helps\:\: you}}

Similar questions