If a^2+b^2+c^2= 20, and ab+ac+ac= 22, then calculate a+b+c.
Answers
Answered by
3
hey your ans is here
_________
given:-
a2+b2+c2=20
Ab+BC+ca =22 ( incorrect in the question)
to find:-
a+b+c
now apply
(a+b+c)2=a2+b2+c2+2(Ab+BC+ca)
putting values
(a+b+c)2=20+2(22)
(a+b+c)2=20+44=64
a+b+c=√64=8
a+b+c=8
_____________
_________
given:-
a2+b2+c2=20
Ab+BC+ca =22 ( incorrect in the question)
to find:-
a+b+c
now apply
(a+b+c)2=a2+b2+c2+2(Ab+BC+ca)
putting values
(a+b+c)2=20+2(22)
(a+b+c)2=20+44=64
a+b+c=√64=8
a+b+c=8
_____________
Answered by
0
Here is your answer!!!!!
=> (a+b+c)²= a²+b²+c²+2(ab+bc+ac)
a²+b²+c²= 20 (given)
ab+bc+ac= 22 (given)
Put these values on the formula,
=> (a+b+c)² = 20 +2(22)
=> (a+b+c)²= 20+44
=> (a+b+c)²= 64
Now to find a+b+c,
=> a+b+c = √64
=> a+b+c = 8
Hence, a+b+c = 8
Be Brainly
=> (a+b+c)²= a²+b²+c²+2(ab+bc+ac)
a²+b²+c²= 20 (given)
ab+bc+ac= 22 (given)
Put these values on the formula,
=> (a+b+c)² = 20 +2(22)
=> (a+b+c)²= 20+44
=> (a+b+c)²= 64
Now to find a+b+c,
=> a+b+c = √64
=> a+b+c = 8
Hence, a+b+c = 8
Be Brainly
Similar questions