Math, asked by kshakti886, 9 months ago

if a^2+b^2+c^2=200, ab+bc ca=28then the a+b+c is​

Answers

Answered by MяƖиνιѕιвʟє
8

GiVeN :-

  •   \:  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 200 \\  \\ ab + bc + ca = 28

To FiNd :-

  • (a + b + c ) = ?

SoLuTiOn :-

Now,

We know that,

( {a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ca)

On putting the above given values in above identity , we get,

  \implies{(a + b + c)}^{2}  = 200 + 2 \times (28) \\  \\  \implies \:  {(a + b + c)}^{2}  = 200 + 56 = 256 \\  \\  \implies \: (a + b + c) =  \sqrt{256}  \\  \\  \implies \: (a + b + c) = 16

Answered by shubhamanand15112005
0

Answer:16

Step-by-step explanation:(a+b+c)²=a²+b²+c² +2(ab +bc + ca) (formula)

( a+b+c)²=200+2×(28)

(a+b+c)²=256

(a+b+c)=256^½

Hence, (a+b+c)=16

Similar questions