If a^2 + b^2 + c^2 =220,ab+bc+ca=4,then find the value of a+b+c
Answers
Answered by
20
a^2 + b^2 + c^2 =220
ab+bc+ca=4
(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)
⇒ (a+b+c)^2 = 220 + 2(4)
⇒ (a+b+c)^2 = 220+8
⇒ (a+b+c)^2 = 228
⇒ a+b+c = √228
ab+bc+ca=4
(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)
⇒ (a+b+c)^2 = 220 + 2(4)
⇒ (a+b+c)^2 = 220+8
⇒ (a+b+c)^2 = 228
⇒ a+b+c = √228
Anonymous:
last line.plz explain
a can be 5 or -5....
similarly, here (a+b+c) can be √228 or -√228
that is the symbol for "plus or minus"
Answered by
1
Step-by-step explanation:
HOPE HELPS YOU.... ....
Attachments:
Similar questions