if a^2+b^2+c^2=250 and a+b+c=25 find ab+bc+ac
Answers
Answered by
2
Given :-
- a² + b² + c² = 250
- a + b + c = 25
Aim :-
- To find the value of ab + bc + ca
Identity to use :-
(a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca => a² + b² + c² + 2(ab + bc + ca)
Substituting a² + b² + c² for 250 and a + b + c as 25,
(25)² = 250 + 2(ab + bc + ca)
625 = 250 + 2(ab + bc + ca)
375 = 2(ab + bc + ca)
375 ÷ 2 = ab + bc + ca
187.5 = ab + bc + ca
Verification :-
Substituting ab + bc + ca for 187.5,
(a+b+c)² = a² + b² + c² + 2(ab + bc + ca)
(25)² = 250 + 2(187.5)
625 = 250 + 375
LHS = RHS
Therefore we can conclude that ab + bc + ca = 187.5
Some more identities :-
- (a+b)² = a² + 2ab + b²
- (a-b)² = a² - 2ab + b²
- (a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca
- (x+a)(x+b) = x² + x(a+b) + ab
- a²-b² = (a+b)(a-b)
- (a+b)³ = a³ + 3a²b + 3ab² + b³
- (a-b)³ = a³ - 3a²b + 3ab² - b³
- a³+b³ = (a+b)(a² - ab + b²)
- a³-b³ = (a-b)(a² + ab + b²)
- a³+b³+c³ - 3abc = (a+b+c)(a² + b² + c² - ab - bc - ca)
Conditional identity :-
if a + b + c = 0,
then,
- a³ + b³ + c³ = 3abc
Similar questions