Math, asked by vanshsinghal987, 11 months ago

if a^2+b^2+c^2=250, andab+bc+ca=3 find a+b+c​

Answers

Answered by debojitsahu999
1

Answer:

16

Step-by-step explanation:

a^{2}+b^{2}+c^{2} = 250

ab+bc+ca = 3

(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca

(a+b+c)^{2} = 250+2(3)

                 = 250+6

    (a+b+c) = 256

                 = \sqrt{256}

                 = 16

Answered by amankumaraman11
0

Given,

 \bf \:   {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 250 \\\bf ab + bc + ac = 3

 \frak{To  \: find  :  \purple{a + b + c =?} }

 \bf \huge Solution   \:  \:   :  : : :

 =  >  \sf \tiny {(a + b + c)}^{2}  =  {a}^{2} +  {b}^{2}   +  {c}^{2}  + 2(ab + bc + ca)

 \tt \leadsto   \:  \:  \tiny{a + b + c =   \green{\sqrt{ {a}^{2} +  {b}^{2}   +  {c}^{2} + 2(ab + bc + ca) }} }

 \frak{ \implies \sqrt{250 + 2(3)} } \\  \frak{ \implies  \sqrt{250 + 6} } \\  \frak{ \implies \sqrt{256}  =  \red{16}}

Therefore,

 \sf{Value  \:  \: of  \:  \: (a +  b  + c)  \:  \: is  \:  \:  \red{16}.}

 \\  \\  \\

<marquee> MARK BRAINLIEST

Similar questions