If a^2+b^2+c^2=280 ab+bc+ca=9/2
So find the value of (a+b+c)^3
Answers
Answered by
2
The value of (a+b+c)^3 = 4913
Answered by
1
◇ ∆nswer ◇
Superman : " I'm here to Help "
we know , ( a+b+c )^3 = a+b+c(a+b+c)^2
Know , (a+b+c)^2 = a^2+b^2+c^2+2(ab+BC+CA)
so , 280 + 9 =√289 = a+b+c = 17
so , (a+b+c=^3 = 17×17×17=4913
#SupermanINFINITY
Superman : " I'm here to Help "
we know , ( a+b+c )^3 = a+b+c(a+b+c)^2
Know , (a+b+c)^2 = a^2+b^2+c^2+2(ab+BC+CA)
so , 280 + 9 =√289 = a+b+c = 17
so , (a+b+c=^3 = 17×17×17=4913
#SupermanINFINITY
SupermanINFINITY:
Where is my Red Underwear ??
Similar questions