Math, asked by bhuykal8izang, 1 year ago

If a ^2 + b ^2 + c ^2 = 30 and a + b + c = 10, then find the value of ab + bc + ca.

Answers

Answered by MVB
33
squaring a + b + c = 10

[ (a + b) + c ]2 = 10 *10

(a+b)2 + 2 (a + b)*c + c2 = 100

a2 + 2ab + b2 + 2ac + 2bc + c2 = 100

a2 + 2 (ab + ac + bc ) + b2 + c2 = 100


a2 + 2 (ab + ac + bc ) + b2 + c2 = 100

(a2 + b2 + c2) + 2 (ab + ac + bc) = 100

30 + 2 ( ab + ac + bc) = 100

2(ab + ac + bc) + 30= 100

(ab + ac + bc) = (100 -30)/2

(ab + ac + bc) = 35
Answered by garenafeedback
5

Answer:

Step-by-step explanation:

squaring a + b + c = 10

[ (a + b) + c ]2 = 10 *10

(a+b)2 + 2 (a + b)*c + c2 = 100

a2 + 2ab + b2 + 2ac + 2bc + c2 = 100

a2 + 2 (ab + ac + bc ) + b2 + c2 = 100

a2 + 2 (ab + ac + bc ) + b2 + c2 = 100

(a2 + b2 + c2) + 2 (ab + ac + bc) = 100

30 + 2 ( ab + ac + bc) = 100

2(ab + ac + bc) + 30= 100

(ab + ac + bc) = (100 -30)/2

(ab + ac + bc) = 35

Similar questions