If a^2 +b^2 + c^2 =40 and ab + bc + ca = 30, find the value of (a + b + c)^3
Answers
Answered by
1
Step-by-step explanation:
a^2+b^2+c^2=40
2(ab+bc+ca)=2*30
a^2+b^2+c^2+2ab+2bc+2ca=40+60
=100
(a+b+c)^2=100
a+b+c=10
(a+b+c)^3=10^3=1000
Answered by
1
Answer:
1000
Step-by-step explanation:
a^2+b^2+c^2 = 40
ab+bc+ca = 30
(a+b+c)^2 = a^2+b^2+c^2+2(ab+bc+ca)
Above the values are mentioned..... substitute the values in above formula
(a+b+c)^2 =40+60
= 100
(a+b+c)^2 = 100
NOW,
(a+b+c) = 10
From above......
(a+b+c)^3 = (a+b+c)^2 ×(a+b+c)
=100×10
=1000
THIS IS THE REQUIRED ANSWER
Similar questions