If a^2 + b^2 + c^2 - ab- bc - ca=0, prove that a = b= c
Answers
Answered by
3
Answer is given below:
a^2 + b^2 + c^2 - ab- bc - ca=0
Multiply Both Sides with 2,We get,
2(a^2 + b^2 + c^2 - ab- bc - ca)=0
2a^2 + 2b^2 + 2c^2 - 2ab- 2bc - 2ca=0
(a^2 -2ba+ b^2 )+( b^2 -2bc+ c^2 )+(c^2 -2a+ a^2)=0
(a-b)^2+(b-c)^2+(c-a)^2=0
Since, the Sum of the square is 0.Then each term should be 0,
(a-b)^2=0,(b-c)^2=0,(c-a)^2=0
a-b=0,b-c=0,c-a=0 ...................(1)
Hence,From equation (1), we get,
a=b&b=c&c=a ...................(2)
Hence,From equation (2), we get,
a=b=c
Hence, proved
Please mark it as brainliest
nandani64:
ok and thanks
Similar questions