Math, asked by rajaksourav10, 3 months ago

If a^2 + b^2 + c^2 = ab + bc + ca, find the value of
(а + с)/b=?​

Answers

Answered by mathdude500
6

\large\underline{\sf{Given- }}

\rm :\longmapsto\: {a}^{2} +  {b}^{2} +  {c}^{2}   = ab \:  +  \: bc \:  +  \: ca

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:\dfrac{a + c}{b}

Solution :-

Given that,

\rm :\longmapsto\: {a}^{2} +  {b}^{2} +  {c}^{2}   = ab \:  +  \: bc \:  +  \: ca

\rm :\longmapsto\: {a}^{2} +  {b}^{2} +  {c}^{2}  -  ab \:   -   \: bc \:   -   \: ca = 0

☆ On multiply by 2, both sides, we get

\rm :\longmapsto\: 2{a}^{2} + 2{b}^{2} +  2{c}^{2}-2ab - 2bc -2ca = 0

\rm :\longmapsto\: {a}^{2} +  {a}^{2}  +  {b}^{2}+{b}^{2}+ {c}^{2} + {c}^{2}-2ab - 2bc -2ca = 0

\rm :\longmapsto\: ({a}^{2}+{b}^{2} - 2ab) + ({b}^{2}+{c}^{2} - 2bc)+({c}^{2} + {a}^{2}-2ac)= 0

\rm :\longmapsto\: {(a - b)}^{2} +  {(b - c)}^{2} +  {(c - a)}^{2} = 0

\red{\bigg \{ \because \: {x}^{2} +  {y}^{2} - 2xy =  {(x - y)}^{2}    \bigg \}}

Now,

We know that, Sum of squares is zero iff term itself is 0.

\rm :\implies\:a - b  = 0\: and \: b - c  = 0\: and \: c - a = 0

\rm :\implies\:a = b\: and \: b = c\: and \: c = a

\bf\implies \:a = b = c

Now,

Consider,

\rm :\longmapsto\:\dfrac{a + c}{b}

 \rm \:  =  \:  \: \dfrac{a + a}{a}

\red{\bigg \{ \because \: \sf \:  a = b = c\bigg \}}

 \rm \:  =  \:  \: \dfrac{2a}{a}

 \rm \:  =  \:  \: 2

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{\boxed{\bf\implies \:\:\dfrac{a + c}{b}  = 2}}

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions