Math, asked by user12337, 8 months ago

if a^2,b^2 ,c^2 are in ap then prove that a/b+c, b/c+a,c/a+b are also in ap

Answers

Answered by dipakghi1
0

ANSWER

We have,

a

2

,b

2

,c

2

are in A.P

⇒b

2

−a

2

=c

2

−b

2

⇒(b−a)(b+a)=(c−b)(c+b)

(c+b)

(b−a)

=

(b+a)

(c−b)

(c+b)(c+a)

(b−a)

=

(b+a)(c+a)

(c−b)

(c+b)(c+a)

(b+c−c−a)

=

(b+a)(c+a)

(c+a−a−b)

c+a

1

b+c

1

=

a+b

1

c+a

1

b+c

1

,

c+a

1

,

a+b

1

are in A.P

b+c

a+b+c

,

c+a

a+b+c

,

a+b

a+b+c

are in A.P

b+c

a

+1,

c+a

b

+1,

a+b

c

+1 are in A.P

b+c

a

,

c+a

b

,

a+b

c

are in A.P

Hence, this is the answer.

Answered by dilliprasaddhakal528
1

It is given that a^2 , b^2 and c^2 are in an AP

So they have a common difference

b^2 - a^2 = c^2-b^2

(b - a)(b + a) = (c - b)(c + b)

(b - a) / (b + c) = (c - b) / (b + a)

Let;

(b - a) / (b + c) = (c - b) / (b + a) = K

Now for a/(b + c) , b/(c + a) and c/(a+ b)

b/(c+a) - a/(b+c)

= b(b+c) - a(a+c) / (b+c)(c+a)

= b^2 + bc - a^2 - ac / (b+c)(c+a)

= (b-a)(b+a) + c(b-a)

= (b-a)(b+a+c) / (b+c)(c+a)

= K(a+b+c) / (c+a)

c/(a+b) - b/(c+a)

= c^2 + ac - ab - b^2 /

= (c-b)(c+b) + a(c-b)

= (c - b)(a+b+c) / (a+b)(c+a)

= K(a+b+c) / (c+a)

So;

b/(c+a) - a/(b+c) = c/(a+b) - b/(c+a)

Which means that terms a/(b+c) , b/(c+a) and c/(a+b) have a a common difference

Therefore a/(b+c) , b/(c+a) and c/(a+b) are in an A.P

Similar questions