Math, asked by Allaramgopalreddy, 4 days ago

If a ^ 2 + b ^ 2 = c ^ 2 then the value of 1/(logc + b a) + 1/(logc - b a) =​

Attachments:

Answers

Answered by chandan454380
1

Answer:

The answer is 1

Step-by-step explanation:

   \displaystyle \frac{1}{\log_{c+b}a}+\displaystyle \frac{1}{\log_{c-b}a}

=\log_a(c+b)+\log_a(c-b), using \displaystyle \log_ab=\frac{1}{\log_ba}

=\log_a[(c+b)(c-b)]\\=\log_a(c^2-b^2)

=\log_a(a^2), since a^2+b^2=c^2\Rightarrow a^2=c^2-b^2

=2\log _aa, since \log_ab^n=n\log_ab

=2(1)=2, since \log_aa=1

Similar questions