If (a^2+b^2)(m^2+n^2) = (am+bn)^2, prove that a:m=b:n
Answers
Answered by
4
Hi ,
LHS = ( a² + b² )( m² + n² )
= a² (m² + n² ) + b² ( m² + n² )
= a² m² + a² n² + b² m² + b² n²
RHS = ( am + bn )²
= a²m² + 2abmn + b² n²
LHS = RHS ( given )
a² n² + b² m² = 2abmn
a² n² + b² m² - 2an × bm = 0
( an - bm )² = 0
an - bm = 0
an = bm
a/m = b / n
Hence proved .
I hope this helps you.
: )
LHS = ( a² + b² )( m² + n² )
= a² (m² + n² ) + b² ( m² + n² )
= a² m² + a² n² + b² m² + b² n²
RHS = ( am + bn )²
= a²m² + 2abmn + b² n²
LHS = RHS ( given )
a² n² + b² m² = 2abmn
a² n² + b² m² - 2an × bm = 0
( an - bm )² = 0
an - bm = 0
an = bm
a/m = b / n
Hence proved .
I hope this helps you.
: )
Deepak1561:
Thanks a lot
Similar questions
Computer Science,
7 months ago
History,
7 months ago
Science,
1 year ago
Social Sciences,
1 year ago
India Languages,
1 year ago